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An optimizing functional (optimality criterion) of a-unified structure is found 
for combined controls of dynamic plants, which obey a complex set of engineer- 
ing specifications. An analytic method is presented for the construction of the 

switching boundary. One of the possible ways of taking into account all the man- 
ifold specifications required of the performance of the motion of dynamic plants 
of various nature leads to the use of combined control Cl]. Here, by a rational 
combined control is meant a control which ensures the optimality of one specific 
quality from the complex set of engineering specifications in a specific region 

of the phase space, the optimality of another quality is achieved in the next 
region, etc. The collection of constraints to be taken into account during the 
optimization is admissible in any of the regions. When the regions of optimality 

of each of the specific qualities are invariant, such a combined control corres- 
ponds to the particular case when the complex performance index of the control 

is representable in the form of a weighted sum of the partial criteria with piece- 

wise constant weighting coefficients @]. The fundamental problems arising in 
the realization of the rational combined controls of dynamic plants are the rep- 

resentation of the performance indices (of the functionals to be optimized) and 

of the controls in a single structural form. Another such problem is the choice 

of the switching boundary between the optimization regions of the various qual- 
ities. The aim of the present paper is to solve these problems in the special 
case of a dynamic plant whose motion is described by linear differential equations. 
A stabilization system is synthesized in the form of a rational combined control 
ensuring the fastest possible damping of the transient response under large pertur- 

bations, as well as high accuracy and small sensitivity to variations of the para- 
meters of the plant and of the stabilization system under small deviations from 
the stable equilibrium position (which is taken to coincide with the origin of the 
system’s phase coordinates). Under such general requirements it is necessary to 
choose a simple constructive representative performance index of the combined 
control, which is critical for the parameters being investigated, and to choose 
a control law of unified structure. 

Let the motion of a dynamic plant be completely described by a controlled linear 
system which, without loss of generality, can be replaced by the system [3] 

q’ = CDq + Iu (I 24 I < 1) (1) 

Here Q is the plant’s n-dimensional phase coordinate vector, @ is the n X n 
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Frobenius matrix,l’ = (O,O, . . . , 0, ‘i);the prime denotes transposition. We assume that 
u is a rational combined control, i.e., in a certain region Qr including the origin 

there is fulfilled the requirement of optimality with respect to accuracy and small sens- 
itivity, while in another region Q2 (external in relation to Qt) , the requirement of 
time optimality. 

The analysis of relay control systems of plants and of control systems with variable 
structure shows [4, 51 that the requirements of accuracy and of the insensitivity of the 

transient response to variations of plant and control parameters can be satisfied if we 

require that in region Qi the motion of system (1) take place in a sliding mode on a 

certain hypersurface Li’ without the representative point going outside the boundary of 
region Q1. We treat the case when S is a hyperplane, i.e., 

S = i kiqi = 0 (2) 
i=l 

The control which ensures the system a sliding mode on &’ has the form [4, 51 

u = - sign S (3) 

It can be shown that to a stable sliding mode of system (1) with a control (3) there corr- 
esponds an optimality criterion of the form 

m 

J, = ?' q'M,qdt 

0 

Here M, is an n X n symmetric positive-definite matrix. The elements of matrix 

Mi are determined from the solution of the inverse optimization problem (see Appendix 

1) which has the form 

g_ l)i+‘(.%& ““,‘$ ) = 0 @=I ,..., 72) 

11 1' 

Choosing a control of form (3) satisfies also the simplicity requirement of the correspond- 
ing optimality criterion for region Q1 since the coefficients ki(i) (i = 1, . .., n) of the 

optimal control are determined from a limit system of Riccati algebraic equations. 

The determination of the boundaries of region Qr is one of the fundamental and com- 

plicated problems when combining optimal controls. These boundaries may be formed 
by the limit trajectories of system (l), which terminate on the boundary segments of 
hyperplane 8, defining the sliding mode region. They may be constructed also by means 
of integrating system (1) in reverse time under initial conditions belonging to the bound- 
ary segments and with u = f 1, as well as by means of simulation on an electronic dig- 

ital computer Cl]. However, boundaries of region Qr determined in such fashion are 
described by expressions which are awkward for the analysis and synthesis of optimal 
systems. 

In Appendix 2, on the basis of Farkas’ theorem [S], it is shown that if region Q1 is 
chosen in the form n 

then the following conditions are fulfilled when r = n . 
1. Region Q, is bounded if the relations 
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(~j~‘-_p)‘B-_I(“), (:p+p)‘zao (.s=l,...,n) (7) 
1 = (i,l,. . . l), Z(s) = (6,,. &, . . . 9 6,~s)~ 6is = {:I i 2’: 

hold, where ;i,ci) (i = 1 ,a) is a nonnegative II- dimensional vector. 
2. After falling into region Q1 the phase point does not go outside its boundary if the 

relations 

i=l, i#S 

i (Z!” Is - Zif’) (bii - bsj) + 1, (k,b,qj - kj) = f aj - bsj-1 - (a, - bg,-1) b,j 
i=l, irs 

(1) (2) Zs,Zis ,Zis a() (i,.s=l,..., n; i#,\; i=f ,..., n-i) (8) 

are fulfilled. 
3. If the relations 

hold, a sliding mode is observed when the phase point falls into S’ in the region Q, . 
We now consider the region (&. Its outer boundaries are usually determined from con- 

structive and technical considerations. Its inner boundaries are the boundaries of region 
Q1. Therefore, the basic problem reduces to the determination of an optimization 

criterion whose structure is close to (4). It is also important to establish the connection 

of the parameters of such a criterion and of the optimal control. As was noted in l7] 
good results on time optimality can be achieved if the form 

J, = 1 ezbl (q’Msq + cu.“) dt (6 > 0) (10) 

is taken as the optimization functional. Here Ms is an n x n symmetric positive-def- 
inite matrix. The control for system (l), optimal in the sense of criterion (lo), is det- 
ermined as a result of solving the problem of the analytic design of controllers and has 
the form 

u = sat u* = U* = $J kf’qi 
i=l 

(11) 

For a system (1) closed by the given control (11) we can find an optimality criterion of 
the form [S, 91 m 

J, = s (q’X,q + cu2\ dt (12) 
0 

Here M, is an n x n symmetric positive-definite matrix. The coefficients of matrix 
Ms are determined from the solution of the inverse problem for system (1) with control 
(ll), which has the form (see Appnedix 1) 
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z (- I)‘+’ (mb~~-,c-’ + aik~~_i + a,p_iki(2’ - k~‘k~~__i) = 0 (p = 11 . . . , n) (13) 
i=l 

a - 1 n+1- 9 k,,, = 0, rn$+r = 0 

Using the results of [lo] we can show that the optimality regions of the closed system 

(l), (11) in the sense of criterion (10) and of criterion (12) coincide. The boundaries of 
this region B are determined by the manifold of tangent trajectories to the hyperplanes 

(14) 
i=l 

Suppose that region Qz belongs to region D. Otherwise we shall consider control (11) 
as quasi-optimal in the sense of criterion (10) and of the corresponding criterion (12). 
A control of form (11) acts only in region Q2. On reaching the boundaries of region 

0, at an instant 7 a switching of the control takes place and it has the form (3). The 
optimality criterion J, of the plant’s motion in both regions can be written as 

Jr. = 1 [q’M,q + cu2] 0% + 1 qW,qdt = 1 [q’hl (q) q + c(q) u2] 02 (15) 
0 

1. e. , the relation 

Rq’M,q = q’M,q -1. cu2 CR > 0) (16) 

is fulfilled on the boundary of Qr and system (1) with control (3) in region Qt and 
control (11) in region Qa is strictly optimal in the sense of the criterion 

Jr. =i mv(q,qJv, i OY = 1, @lk!,q = 

17 QEQl 

v=1 v=1 0, 4E Qz(Q@ 91) 

A criterion of form (15) satisfies all the requirements listed earlier. Thus, the require- 
ment of simplicity is fulfilled because to seek for the coefficients ki(l), ~$(a) in controls 

(3) and (11) we need one and the same procedure for solving kiccati algebraic equations. 
The condition 1 ub 1 < 1 is usually fulfilled in region Q1. Therefore; instead of cond- 

ition (16) there are fulfilled the conditions 

RM, =. M, + ck’k, k = (kl@), . . . . k,(2)) (17) 

System (5). (7) - (9). (13). (17) establishes the algorithmic connection between the 
known and the unknown coefficients and defines the set of optimality criteria of form 
(15) for system (l), as well as the boundaries for the switching of control (15) to control 
(3). The solution of the system obtained can be found by one of the methods considered 

in IIll]. 
As an example we consider the system 

41'=qz, qz’=q3, q3’=-22gl-2q3--55q3+~, lul\<l, Q(O)=c?o (18 1 

The combined control 
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f sat (- lOciI - 19.5q~ - 5.593) Q z Ql 

’ = 1 - sign (1.4lq1 + 3g~ + (!3), ‘I E ‘21 
(19) 

satisfies the specifications imposed on the system’s transient response concerning time- 

optimality in region Q2 and accuracy and small sensitivity in region Q1 Region QI, 

found from relations (7) - (9), has the form 

/ 0.203 q1 + qz 1 < 0.033, / 2.01 q1 + qz 1 < 0.192, 12 ~1 + 42 + q3 1 <a: 0.033 

The optimizing functional (15) for system (18) and the combined control (19) are defined 

by the following parameters: 

2 1.62 0.46 1.40 0 0 

Mu= 1.62 7.10 0.89 t 1112 = 0 4.71 0 

0.46 0.89 1 I I 0 0 0.99 ’ I 

c=O.Ol 

The graph of the transient response in the phase plane for q. = (0.33, 0.67, 0) is shown 

in Fig.1 and the graph of the control function, in Fig.2. 

Fig. 1. Fig. 2. 

Appendix 1. Solution of the inverse optimization problem. 

Following [9] we write the characteristic equation for the closed system (1). (11) and 

the Euler-Lagrange equations set up for functional (12) 

1 + i r,hi = 0, 
i=l 

1 + + i (-l)i Pi+&” = 0 

2=1 

%l 
“fi = -y- , cl; = ni - kj2) (i=l’ , . . . p), Y,+l = 1 (A. 1) 

nf1 

p, = 2 (- l)i+s (“i2s_pc-’ + nin2s-i) (.\=l,...,n+f) 
i=l 

‘%tl = mntll = 0 @=I I..., n+l), a?,+I=l (A. 2) 

The second equation of (A. 1) can be written as 

(A. 3) 
i=_l *=.:_1 

where the first factor corresponds to the group of roots h, (S = 1, . . . . n) with negative real 

parts of the second equation of (A. 1). By definition, the closed system (1). (11) is asym- 

ptotically stable, therefore in order for a functional whose characteristic equation has 

the form (A. 1) to be that functional for which the given control (11) is optimal, it is 

necessary and sufficient that the condition hi = ‘pi (i := 1, n) be fulfilled. From 

(A. 2), (A. 3) follows 
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+L = g (- l)‘+p rir2P_i (p = 1,. . . , n -I- 1) 
i=l 

Hence, with due regard to (A. 1). we find 

+ = (_ 1y+2 ptl = ---$ = * = ,,,,,,J + ul: 

n+1 

p, = 2 (- QifP cLi~2P_t @=I,..., n+1) 

(A.4) 

(A. 5) 

i=l 

We obtain relation (13) by comparing expressions (A. 2) and (A. 5). 
Let us find the solution of the inverse optimization problem for system (1) with control 

(3) and optimality criterion (4). It is evident that the sliding segments on S can be 
treated as the result of the shrinking of an optimality region L of system (1) in the sense 
of some criterion of form (12) as e - 0. Here the strip with boundaries (14) shrinks to 
some hyperplane of form (2). The expression for hyperplane S is determined to within 
a constant factor R ,P- 0. Therefore, we consider the ratio ki’) / kp) by assuming that 

k(l) /J2) 

$ii= 
lim 1 

1 
CAD ky' 

From expressions (A. 2), (A. 4) we have 

?$ (_ $t” [ mi2;;;?;I/l~;2P-~ - :I??& (a2,_i _ $_i)] = 0 
(A. 6) 

i=l 1 

/&2) = - ‘Q-1 
z (i = 1,. . ., n) 

where A,i are the coefficients of the optimal Liapunov generating function v]. We 
obtain (5) by going to the limit as c - o in expression (A. 6). The validity of relations 

(5) can be established by direct verification of the optimality of control law (3) for system 
(1) in the sliding mode in the sense of criterion (4), using the results of [3]. 

Appendix 2. Construction of region Q1. The fulfillment ofcondition 
2 implies the absence in region Qi of trajectories of system (1) (3) intersecting the 
boundaries of region &. This requirement is expressed analytically by the inequality 

f (Q 7 4 Ir d 0 (A. 7) 
where f (‘I, U) = 0 is the relation defining (together with the expressions for the boundary 
r of region Qr) the manifold of trajectories tangent to the boundary. In the general 

case expression (6) defines an (R - r)-dimensional strip in an n-dimensional space. For 
Condition 2 to be fulfilled in region Q1 it is necessary to impose certain constraints on 
the matrix CD of system (1) [12]. Let r = n and let the inequalities 

IQiI’(ri’ Ci>O (i=l,...,ra) (A. 3) 

hold. The fulfillment of Condition 3 implies that one of the conditions [4] 

k’Qq + k’l < 0, k’Qq + k/l :’ 0 

k’=(kl,..., k,l)=(k~) ,..., k;‘) 
(A. 9) 
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is fulfilled on the hyperplane s = 0 in region Q1 . Thus, for the fulfillment of the con- 

ditions imposed on the boundary of region Qr it is sufficient to require that relations 

(A. 7). (A. 8). and one of (A. 9) hold when relations (6) are fulfilled. The connection 

between the known and the unknown coefficients can be established if we make use of 

Farkas’ theorem [6]: in order that the inequality 

‘F (‘I) =, c (A. 10) 

follow from the joint system of inequalities 

f; (d 2 di (i=l,...,p) (A.111 

it is necessary and sufficient that there exist p nonnegative numbers hi >O (i = i,... P) 

such that the relations 

_$ 'ifi(Q)=cP(q)v f$ lidi,<c 
i=l i=l 

(A. 12) 

are fulfilled. Conditions (A. 9) are fulfilled simultaneously be virtue of the symmetry of 

region Qi. Suppose that the validity of the first of inequalities (A. 9) follows from the 

fulfillment of conditions (2) and 
R 

(A. 13) 

By substituting the value of qn found from (2) into expression (A, 13) and into the first 

expression of (A. 9), we obtain 

h- 
‘l-l k 

ak (A. 14) 
- nnk i qi> kTL 

11 

Applying Farkas’ theorem (by considering the first inequality of (A. 14) as (A-10) and the 

second inequality of (A. 14) as (A. 11)). instead of (A. 12) we have the relation from (9) 
and the relation 

11-l 

h 2 (bli-bL,ns)9i= z (ki_l-aik,- kn-lya”kn ki) qi 
i=l n * i=l n 

fulfilled, obviously, if the first relation from (9) holds. 

By Farkas’ theorem the fulfillment of inequalities (A. 8) as a consequence of the system 

of inequalities (6) implies the fulfillment of the inequalities in (7) and of the following 

equalities which are fulfilled if the equalities in (7) hold: 

(“j;” - A?))# uq = ‘I, (s = 1, . . ) n) 

The hypersurface S divides region Qi into two subregions Q; (u = -1) and Q; (U = 
= +I). Because the region Qr is symmetric about the origin, requirement (A. 7) is ful- 

filled simultaneously in the subregions Qy and 0:. Therefore, we consider only the 

region Q; which is defined by relations (6) and the inequality 

In region Q1 let the hypersurface S intersect with all the hyperplanes corresponding to 

inequalities (6). The condition for the tangency of the trajectories of system (1) for 
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u = --1 with the boundaries of region Q, 
n 

+- 2 bsjQj =- ds (s=i,...,n) 
j=l 

has the form 

i (- aibsn + bsj_i) Qj = bsn 
i=l 

(A. 16) 

(A. 17) 

Further, the upper sign in the expressions corresponds to the “plus” sign in (A. 16). the 

lower, to the “minus” sign. Instead of relation (A, 17) we can write the system of ine- 
qualities 

f i (-ajbsn + bsj_i) qj > T bs,, (A. 18) 
j=l 

Without loss of generality we can set b,, = l.Substituting the values of Qn found from 
(A. 16) into (6), (A. 15) ard (A. 18) we note that when (A. 16) is fulfilled, nom the system 
of inequalities 

n-1 

~ (bij - b,j) (Ij >/ - di fds, - 5' (bij - bsj) qj > - di i ds 
j=l j=l 

n-1 

2l (k,bsj - kj) qj > f :c d 
7, s 

(i,s=l,...,n;i#s) 

there must follow the fulfillment of the inequalities 

n-1 

f 2 [aj - bsj-l- (~0 - bsn_1) bsjl Clj > 7 1 + (an - ban-1) ds 
j=l 

Applying Farkas’ theorem to (A. 19), (A. 20) we find the following relation: 
n n-1 

2 (2;;' - Z,!;') 2 (bij - bsj) qj + I, nxl (k,bsj - kj) qj = 

i=l,i#S j=l 7=1 

n-1 

Is, 'I:), 1;:' > 0 (i, s = 1, . . , n; i # s) 

which is fulfilled if conditions (8) are satisfied. 
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We consider the problem of reducing conservative systems to normal coordinates 
by means of the method of regularizing time transformation widely used in cel- 
estial mechanics. Because it is well known that canonic variables have equal 
validity we can consider the reduction of the systems alsp to normal momenta. 

In connection with the reduction mentioned we intwduce the concepts of normal 
and incorhpletely normal system configurations. We study the existence conctir- 
ions for normal configurations, proceeding from the structural properties of the 
Hamiltonian. In particular, we examine these conditions for systems with com- 
plete connections, systems with two degrees of freedom, Liouville-type systems, 
homogeneous systems, systems admitting of a similarity transformation group, 
systems possessing radial symmetry, and some others. 

1. Definition8 and Strtemsnt of the Problem. Weconsider aconser- 
vative system with k degrees of freedom, moving in a certain force field with energy 
constant n. The Hamilton-Jacobi equation has the form 


